Justin Deschenaux

PhD Student in Machine Learning at


Publications and pre-prints

* indicates equal contribution

Partition Generative Modeling: Masked Modeling Without Masks
Justin Deschenaux, Lan Tran, Caglar Gulcehre
ArXiv preprint
The Diffusion Duality
Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin T Chiu, Volodymyr Kuleshov
International Conference on Machine Learning (ICML) 2025
Beyond Autoregression: Fast LLMs via Self-Distillation Through Time
Justin Deschenaux, Caglar Gulcehre
International Conference on Learning Representations (ICLR) 2025
Unpacking SDXL Turbo: Interpreting Text-to-Image Models with Sparse Autoencoders
Viacheslav Surkov, Chris Wendler, Mikhail Terekhov, Justin Deschenaux, Robert West, Caglar Gulcehre
ArXiv preprint
Promises, Outlooks and Challenges of Diffusion Language Modeling
Justin Deschenaux, Caglar Gulcehre
ArXiv preprint
Going beyond Compositions, DDPMs Can Produce Zero-Shot Interpolations
Justin Deschenaux*, Igor Krawczuk*, Grigorios Chrysos, Volkan Cevher
International Conference on Machine Learning (ICML) 2024
Distributed extra-gradient with optimal complexity and communication guarantees
Ali Ramezani-Kebrya*, Kimon Antonakopoulos*, Igor Krawczuk*, Justin Deschenaux*, Volkan Cevher
International Conference on Learning Representations (ICLR) 2023